Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
1.
Lancet ; 401(10389): 1681-1690, 2023 05 20.
Article in English | MEDLINE | ID: covidwho-2310676

ABSTRACT

BACKGROUND: Acute respiratory infection (ARI) is a leading cause of morbidity and mortality globally, with 83% of ARI mortality occurring in low-income and middle-income countries (LMICs) before the COVID-19 pandemic. We aimed to estimate the effect of interventions promoting handwashing with soap on ARI in LMICs. METHODS: In our systematic review and meta-analysis, we searched MEDLINE, Embase, Web of Science, Scopus, Cochrane Library, Global Health, and Global Index Medicus for studies of handwashing with soap interventions in LMICs from inception to May 25, 2021. We included randomised and non-randomised controlled studies of interventions conducted in domestic, school, or childcare settings. Interventions promoting hand hygiene methods other than handwashing with soap were excluded, as were interventions in health-care facilities or the workplace. The primary outcome was ARI morbidity arising from any pathogen for participants of any age. Secondary outcomes were lower respiratory infection, upper respiratory infection, influenza confirmed by diagnostic test, COVID-19 confirmed by diagnostic test, and all-cause mortality. We extracted relative risks (RRs), using random-effects meta-analysis to analyse study results, and metaregression to evaluate heterogeneity. We assessed risk of bias in individual studies using an adapted Newcastle-Ottawa scale, and assessed the overall body of evidence using a Grading of Recommendations, Assessment, Development, and Evaluation (GRADE) approach. The study is registered with PROSPERO, CRD42021231414. FINDINGS: 26 studies with 161 659 participants met inclusion criteria, providing 27 comparisons (21 randomised). Interventions promoting handwashing with soap reduced any ARI compared with no handwashing intervention (RR 0·83 [95% CI 0·76-0·90], I2 88%; 27 comparisons). Interventions also reduced lower respiratory infections (0·78 [0·64-0·94], I2 64%; 12 comparisons) and upper respiratory infections (0·74 [0·59-0·93], I2 91%; seven comparisons), but not test-confirmed influenza (0·94 [0·42-2·11], I2 90%; three comparisons), test-confirmed COVID-19 (no comparisons), or all-cause mortality (prevalence ratio 0·95 [95% CI 0·71-1·27]; one comparison). For ARI, no heterogeneity covariates were significant at p<0·1 and the GRADE rating was moderate certainty evidence. INTERPRETATION: Interventions promoting handwashing with soap can reduce ARI in LMICs, and could help to prevent the large burden of respiratory disease. FUNDING: Bill & Melinda Gates Foundation, Reckitt Global Hygiene Institute, and UK FCDO.


Subject(s)
COVID-19 , Influenza, Human , Respiratory Tract Infections , Humans , COVID-19/prevention & control , Developing Countries , Soaps , Pandemics/prevention & control , Respiratory Tract Infections/prevention & control
2.
Sci Rep ; 12(1): 20470, 2022 Nov 28.
Article in English | MEDLINE | ID: covidwho-2151087

ABSTRACT

The urban environment influences human health, safety and wellbeing. Cities in Africa are growing faster than other regions but have limited data to guide urban planning and policies. Our aim was to use smart sensing and analytics to characterise the spatial patterns and temporal dynamics of features of the urban environment relevant for health, liveability, safety and sustainability. We collected a novel dataset of 2.1 million time-lapsed day and night images at 145 representative locations throughout the Metropolis of Accra, Ghana. We manually labelled a subset of 1,250 images for 20 contextually relevant objects and used transfer learning with data augmentation to retrain a convolutional neural network to detect them in the remaining images. We identified 23.5 million instances of these objects including 9.66 million instances of persons (41% of all objects), followed by cars (4.19 million, 18%), umbrellas (3.00 million, 13%), and informally operated minibuses known as tro tros (2.94 million, 13%). People, large vehicles and market-related objects were most common in the commercial core and densely populated informal neighbourhoods, while refuse and animals were most observed in the peripheries. The daily variability of objects was smallest in densely populated settlements and largest in the commercial centre. Our novel data and methodology shows that smart sensing and analytics can inform planning and policy decisions for making cities more liveable, equitable, sustainable and healthy.


Subject(s)
Deep Learning , Animals , Humans , Automobiles , Cities , City Planning , Ghana
3.
Sci Adv ; 8(39): eabo3381, 2022 Sep 30.
Article in English | MEDLINE | ID: covidwho-2053087

ABSTRACT

The World Health Organization (WHO) recently released new guidelines for outdoor fine particulate air pollution (PM2.5) recommending an annual average concentration of 5 µg/m3. Yet, our understanding of the concentration-response relationship between outdoor PM2.5 and mortality in this range of near-background concentrations remains incomplete. To address this uncertainty, we conducted a population-based cohort study of 7.1 million adults in one of the world's lowest exposure environments. Our findings reveal a supralinear concentration-response relationship between outdoor PM2.5 and mortality at very low (<5 µg/m3) concentrations. Our updated global concentration-response function incorporating this new information suggests an additional 1.5 million deaths globally attributable to outdoor PM2.5 annually compared to previous estimates. The global health benefits of meeting the new WHO guideline for outdoor PM2.5 are greater than previously assumed and indicate a need for continued reductions in outdoor air pollution around the world.

4.
Lancet ; 398(10301): 685-697, 2021 08 21.
Article in English | MEDLINE | ID: covidwho-1815297

ABSTRACT

BACKGROUND: Associations between high and low temperatures and increases in mortality and morbidity have been previously reported, yet no comprehensive assessment of disease burden has been done. Therefore, we aimed to estimate the global and regional burden due to non-optimal temperature exposure. METHODS: In part 1 of this study, we linked deaths to daily temperature estimates from the ERA5 reanalysis dataset. We modelled the cause-specific relative risks for 176 individual causes of death along daily temperature and 23 mean temperature zones using a two-dimensional spline within a Bayesian meta-regression framework. We then calculated the cause-specific and total temperature-attributable burden for the countries for which daily mortality data were available. In part 2, we applied cause-specific relative risks from part 1 to all locations globally. We combined exposure-response curves with daily gridded temperature and calculated the cause-specific burden based on the underlying burden of disease from the Global Burden of Diseases, Injuries, and Risk Factors Study, for the years 1990-2019. Uncertainty from all components of the modelling chain, including risks, temperature exposure, and theoretical minimum risk exposure levels, defined as the temperature of minimum mortality across all included causes, was propagated using posterior simulation of 1000 draws. FINDINGS: We included 64·9 million individual International Classification of Diseases-coded deaths from nine different countries, occurring between Jan 1, 1980, and Dec 31, 2016. 17 causes of death met the inclusion criteria. Ischaemic heart disease, stroke, cardiomyopathy and myocarditis, hypertensive heart disease, diabetes, chronic kidney disease, lower respiratory infection, and chronic obstructive pulmonary disease showed J-shaped relationships with daily temperature, whereas the risk of external causes (eg, homicide, suicide, drowning, and related to disasters, mechanical, transport, and other unintentional injuries) increased monotonically with temperature. The theoretical minimum risk exposure levels varied by location and year as a function of the underlying cause of death composition. Estimates for non-optimal temperature ranged from 7·98 deaths (95% uncertainty interval 7·10-8·85) per 100 000 and a population attributable fraction (PAF) of 1·2% (1·1-1·4) in Brazil to 35·1 deaths (29·9-40·3) per 100 000 and a PAF of 4·7% (4·3-5·1) in China. In 2019, the average cold-attributable mortality exceeded heat-attributable mortality in all countries for which data were available. Cold effects were most pronounced in China with PAFs of 4·3% (3·9-4·7) and attributable rates of 32·0 deaths (27·2-36·8) per 100 000 and in New Zealand with 3·4% (2·9-3·9) and 26·4 deaths (22·1-30·2). Heat effects were most pronounced in China with PAFs of 0·4% (0·3-0·6) and attributable rates of 3·25 deaths (2·39-4·24) per 100 000 and in Brazil with 0·4% (0·3-0·5) and 2·71 deaths (2·15-3·37). When applying our framework to all countries globally, we estimated that 1·69 million (1·52-1·83) deaths were attributable to non-optimal temperature globally in 2019. The highest heat-attributable burdens were observed in south and southeast Asia, sub-Saharan Africa, and North Africa and the Middle East, and the highest cold-attributable burdens in eastern and central Europe, and central Asia. INTERPRETATION: Acute heat and cold exposure can increase or decrease the risk of mortality for a diverse set of causes of death. Although in most regions cold effects dominate, locations with high prevailing temperatures can exhibit substantial heat effects far exceeding cold-attributable burden. Particularly, a high burden of external causes of death contributed to strong heat impacts, but cardiorespiratory diseases and metabolic diseases could also be substantial contributors. Changes in both exposures and the composition of causes of death drove changes in risk over time. Steady increases in exposure to the risk of high temperature are of increasing concern for health. FUNDING: Bill & Melinda Gates Foundation.


Subject(s)
Cause of Death/trends , Cold Temperature/adverse effects , Global Burden of Disease/statistics & numerical data , Global Health/statistics & numerical data , Hot Temperature/adverse effects , Mortality/trends , Bayes Theorem , Heart Diseases/epidemiology , Humans , Metabolic Diseases/epidemiology
5.
Sci Total Environ ; 803: 149931, 2022 Jan 10.
Article in English | MEDLINE | ID: covidwho-1373255

ABSTRACT

Economic and urban development in sub-Saharan Africa (SSA) may be shifting the dominant air pollution sources in cities from biomass to road traffic. Considered as a marker for traffic-related air pollution in cities, we conducted a city-wide measurement of NOx levels in the Accra Metropolis and examined their spatiotemporal patterns in relation to land use and meteorological factors. Between April 2019 to June 2020, we collected weekly integrated NOx (n = 428) and NO2 (n = 472) samples at 10 fixed (year-long) and 124 rotating (week-long) sites. Data from the same time of year were compared to a previous study (2006) to assess changes in NO2 concentrations. NO and NO2 concentrations were highest in commercial/business/industrial (66 and 76 µg/m3, respectively) and high-density residential areas (47 and 59 µg/m3, respectively), compared with peri-urban locations. We observed annual means of 68 and 70 µg/m3 for NO and NO2, and a clear seasonal variation, with the mean NO2 of 63 µg/m3 (non-Harmattan) increased by 25-56% to 87 µg/m3 (Harmattan) across different site types. The NO2/NOx ratio was also elevated by 19-28%. Both NO and NO2 levels were associated with indicators of road traffic emissions (e.g. distance to major roads), but not with community biomass use (e.g. wood and charcoal). We found strong correlations between both NO2 and NO2/NOx and mixing layer depth, incident solar radiation and water vapor mixing ratio. These findings represent an increase of 25-180% when compared to a small study conducted in two high-density residential neighborhoods in Accra in 2006. Road traffic may be replacing community biomass use (major source of fine particulate matter) as the prominent source of air pollution in Accra, with policy implication for growing cities in SSA.


Subject(s)
Air Pollutants , Air Pollution , Air Pollutants/analysis , Air Pollution/analysis , Environmental Monitoring , Meteorology , Nitrogen Dioxide/analysis , Nitrogen Oxides/analysis , Particulate Matter/analysis
6.
Glob Heart ; 16(1): 8, 2021 01 28.
Article in English | MEDLINE | ID: covidwho-1285507

ABSTRACT

Although the attention of the world and the global health community specifically is deservedly focused on the COVID-19 pandemic, other determinants of health continue to have large impacts and may also interact with COVID-19. Air pollution is one crucial example. Established evidence from other respiratory viruses and emerging evidence for COVID-19 specifically indicates that air pollution alters respiratory defense mechanisms leading to worsened infection severity. Air pollution also contributes to co-morbidities that are known to worsen outcomes amongst those infected with COVID-19, and air pollution may also enhance infection transmission due to its impact on more frequent coughing. Yet despite the massive disruption of the COVID-19 pandemic, there are reasons for optimism: broad societal lockdowns have shown us a glimpse of what a future with strong air pollution measures could yield. Thus, the urgency to combat air pollution is not diminished, but instead heightened in the context of the pandemic.


Subject(s)
Air Pollution/adverse effects , Cardiovascular Diseases/physiopathology , Global Health , Acute Disease , American Heart Association , COVID-19 , Cardiology , Cardiovascular Diseases/etiology , Cardiovascular Diseases/metabolism , Chronic Disease , Environmental Health , Europe , Heart Disease Risk Factors , Humans , Inflammation , Oxidative Stress , SARS-CoV-2 , Societies, Medical , United States
7.
Eur Heart J ; 42(15): 1460-1463, 2021 Apr 14.
Article in English | MEDLINE | ID: covidwho-1052197

ABSTRACT

Although the attention of the world and the global health community specifically is deservedly focused on the COVID-19 pandemic, other determinants of health continue to have large impacts and may also interact with COVID-19. Air pollution is one crucial example. Established evidence from other respiratory viruses and emerging evidence for COVID-19 specifically indicates that air pollution alters respiratory defense mechanisms leading to worsened infection severity. Air pollution also contributes to co-morbidities that are known to worsen outcomes amongst those infected with COVID-19, and air pollution may also enhance infection transmission due to its impact on more frequent coughing. Yet despite the massive disruption of the COVID-19 pandemic, there are reasons for optimism: broad societal lockdowns have shown us a glimpse of what a future with strong air pollution measures could yield. Thus, the urgency to combat air pollution is not diminished, but instead heightened in the context of the pandemic.


Subject(s)
Air Pollutants , Air Pollution , COVID-19 , Cardiovascular Diseases , Air Pollutants/analysis , Air Pollutants/toxicity , Air Pollution/adverse effects , Air Pollution/analysis , Cardiovascular Diseases/epidemiology , Cardiovascular Diseases/etiology , Communicable Disease Control , Humans , Pandemics , Particulate Matter/adverse effects , Particulate Matter/analysis , SARS-CoV-2
9.
Environ Health Perspect ; 128(6): 69001, 2020 06.
Article in English | MEDLINE | ID: covidwho-630463
10.
Health Rep ; 31(3):14-26, 2020.
Article in English | MEDLINE | ID: covidwho-662158

ABSTRACT

BACKGROUND: Immigrants make up 20% of the Canadian population;however, little is known about the mortality impacts of fine particulate matter (PM2.5) air pollution on immigrants compared with non-immigrants, or about how impacts may change with duration in Canada. DATA AND METHODS: This study used the 2001 Canadian Census Health and Environment Cohort, a longitudinal cohort of 3.5 million individuals, of which 764,000 were classified as immigrants (foreign-born). Postal codes from annual income tax files were used to account for mobility among respondents and to assign annual PM2.5 concentrations from 1998 to 2016. Exposures were estimated as a three-year moving average prior to the follow-up year. Cox survival models were used to determine hazard ratios (HRs) for cause-specific mortality, comparing the Canadian and foreign-born populations, with further stratification by year of immigration grouped into 10-year cohorts. RESULTS: Differences in urban-rural settlement patterns resulted in greater exposure to PM2.5 for immigrants compared with non-immigrants (mean = 9.3 vs. 7.5 µg/m3), with higher exposures among more recent immigrants. In fully adjusted models, immigrants had higher HRs per 10 µg/m3 increase in PM2.5 concentration compared with Canadian-born individuals for cardiovascular mortality (HR [95% confidence interval] = 1.22 [1.12 to 1.34] vs. 1.12 [1.07 to 1.18]) and cerebrovascular mortality (HR = 1.25 [1.03 to 1.52] vs. 1.03 [0.93 to 1.15]), respectively. However, tests for differences between the two groups were not significant when Cochran's Q test was used. No significant associations were found for respiratory outcomes, except for lung cancer in non-immigrants (HR = 1.10 [1.02 to 1.18]). When stratified by year of immigration, differences in HRs across varied by cause of death. DISCUSSION: In Canada, PM2.5 is an equal-opportunity risk factor, with immigrants experiencing similar if not higher mortality risks compared with non-immigrants for cardiovascular-related causes of death. Some notable differences also existed with cerebrovascular and lung cancer deaths. Continued reductions in air pollution, particularly in urban areas, will improve the health of the Canadian population as a whole.

13.
Environ Health Perspect ; 128(5): 57005, 2020 05.
Article in English | MEDLINE | ID: covidwho-357658

ABSTRACT

BACKGROUND: Low-income countries have reduced health care system capacity and are therefore at risk of substantially higher COVID-19 case fatality rates than those currently seen in high-income countries. Handwashing is a key component of guidance to reduce transmission of the SARS-CoV-2 virus, responsible for the COVID-19 pandemic. Prior systematic reviews have indicated the effectiveness of handwashing to reduce transmission of respiratory viruses. In low-income countries, reduction of transmission is of paramount importance, but social distancing is challenged by high population densities and access to handwashing facilities with soap and water is limited. OBJECTIVES: Our objective was to estimate global access to handwashing with soap and water to inform use of handwashing in the prevention of COVID-19 transmission. METHODS: We utilized observational surveys and spatiotemporal Gaussian process regression modeling in the context of the Global Burden of Diseases, Injuries, and Risk Factors Study to estimate access to a handwashing station with available soap and water for 1,062 locations from 1990 to 2019. RESULTS: Despite overall improvements from 1990 {33.6% [95% uncertainty interval (UI): 31.5, 35.6] without access} to 2019, globally in 2019, 2.02 (95% UI: 1.91, 2.14) billion people, 26.1% (95% UI: 24.7, 27.7) of the global population, lacked access to handwashing with available soap and water. More than 50% of the population in sub-Saharan Africa and Oceania were without access to handwashing in 2019, and in eight countries, 50 million or more persons lacked access. DISCUSSION: For populations without handwashing access, immediate improvements in access or alternative strategies are urgently needed, and disparities in handwashing access should be incorporated into COVID-19 forecasting models when applied to low-income countries. https://doi.org/10.1289/EHP7200.


Subject(s)
Coronavirus Infections/epidemiology , Global Health , Hand Disinfection , Pneumonia, Viral/epidemiology , Poverty , Betacoronavirus , COVID-19 , Humans , Pandemics , Population Density , Risk Factors , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL